Mark Scheme (Results)

 January 2011GCE

GCE Chemistry (6CH05/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/
Alternatively, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 08445760037

January 2011
Publications Code UA026203
All the material in this publication is copyright
© Edexcel Ltd 2011

Section A (multiple choice)

Question	Correct Answer	Mark
Number		
$\mathbf{1}$	D	$\mathbf{1}$
Question Correct Answer Mark Number $\mathbf{1}$ 2 C		

Question Number	Correct Answer	Mark
3	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
4	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
5	B	1

Question Number	Correct Answer	Mark
6	A	$\mathbf{1}$

Question	Correct Answer	Mark
Number		
7	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{8 (a)}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{8 ~ (b) ~}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
8 (c)	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
8 (d)	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
9 (a)	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{9}$ (b)	A	$\mathbf{1}$

Question	Correct Answer	Mark
Number		
9 (c)	D	$\mathbf{1}$

Question	Correct Answer	Mark
Number		
10	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
11	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 2 (a)}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 2 ~ (b) ~}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
13	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
14	D	$\mathbf{1}$

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$ (a) (i)	Electrophilic substitution (any order)		1

Question Number	Acceptable Answers	Reject	Mark
15 (a) (ii)	$\mathrm{AlCl}_{3}+\mathrm{CH}_{3} \mathrm{CH}\left({\mathrm{Br}) \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow \mathrm{AlCl}_{3} \mathrm{Br}^{-}+\mathrm{CH}_{3} \mathrm{C}^{+} \mathrm{HCH}_{2} \mathrm{CH}_{3}, ~}_{\text {an }}\right.$ ALLOW CH ${ }_{3} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow \mathrm{Br}^{-}+\mathrm{CH}_{3} \mathrm{C}^{+} \mathrm{HCH}_{2} \mathrm{CH}_{3}$ Ignore position of the + for this mark Ignore curly arrows in this equation Electron pair (curly arrow) from ring to positively charged second carbon of carbocation Structure of intermediate must include positive sign Electron pair from $\mathrm{C}-\mathrm{H}$ bond reforms delocalized ring	AlCl_{4}^{-}	4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$ (b)	Advantage Graphite catalyst easier to remove / separate / can be filtered off (from reaction mixture) / (1) graphite can be re-used Justification AlCl is soluble or graphite is insoluble /different state / different phase OR Graphite can be re-used Mark independently	Just graphite is a heterogeneous catalyst	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{1 5}$ (c) (i)	(Conc) nitric acid	(1)		$\mathbf{2}$
	(Conc) sulfuric acid	(1)		
	penalise dilute once only			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$ (c) (ii)	Greater electron density in ring / ring is activated / more susceptible to electrophilic attack	Just more susceptible to attack	$\mathbf{2}$
Due to electron releasing / donating methyl (1) groups	(1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$ (c) (iii)	Reduction ALLOW redox	Hydrogenation	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
15 (c) (iv)	NaNO_{2} / sodium nitrite / sodium nitrate(III) \& HCl (any strong acid) Temp $0-10^{\circ} \mathrm{C} /$ less than $10^{\circ} \mathrm{C} /$ any quoted temperature between $0-10^{\circ} \mathrm{C} /$ in ice bath $\begin{align*} & \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}+\mathrm{HNO}_{2}+\mathrm{HCl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}_{2}{ }^{+} \mathrm{Cl}^{-}+ \\ & 2 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{align*}$ Add phenol dissolved in alkali $\left(\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}_{2}{ }^{+} \mathrm{Cl}^{-}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right) \rightarrow \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}$ $+(\mathrm{HCl})$ (1) Mark given for correct organic product Allow correct organic product shown as $-\mathrm{O}^{-}$ instead of -OH Mark independently	HNO_{3}	5

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 ~ (a) ~ (i) ~}$	$(\mathrm{COOH})_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \quad$ (1)		$\mathbf{2}$
	$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ (1)		

Question Number	Acceptable Answers	Reject	Mark
16 (a) (ii)	$5(\mathrm{COOH})_{2}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+} \rightarrow 10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$ ALLOW multiples ALLOW $5(\mathrm{COOH})_{2}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+} \rightarrow 10 \mathrm{CO}_{2}+$ $2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{H}^{+}$ Ignore state symbols even if incorrect	Equation with electrons left in	1

Question Number	Acceptable Answers	Reject	Mark
16 (a) (iii)	Moles of $\mathrm{MnO}_{4}^{-}=11.30 / 1000 \times 0.010=1.13 \times 10^{-4}$ (mol) (1) Moles of $(\mathrm{COOH})_{2}$ in $10 \mathrm{~cm}^{3}=1.13 \times 10^{-4} \times 5 / 2=$ 2.825×10^{-4} (mol) Moles of $(\mathrm{COOH})_{2}$ in whole sample $=2.825 \times 10^{-4} \mathrm{x}$ $50=0.01412(5)(\mathrm{mol})$ Mass of acid $=0.01412(5) \times 90=1.27 \mathrm{~g}$ (1) $\%$ in leaves $=1.27 / 250 \times 100=0.51$ (\%) (1) If ratio $5: 2$ is not used, maximum (4) e.g. if ratio 2:5 is used then percentage in leaves = 0.08\%	TE for 5th mark if \% is greater than 100\% Rounding errors once in first 4 marks Final answers not quoted to 2 dp	5

Question Number	Acceptable Answers		Reject	Mark
16 (a) (iv)	$\begin{aligned} & \pm 0.05 \mathrm{~cm}^{3} \\ & {[(0.05 \times 2) / 11.3] \times 100=0.88 \%} \\ & \text { ALLOW } \pm 0.025 \mathrm{~cm}^{3} \\ & {[(0.025 \times 2) / 11.3] \times 100=0.44 \%} \end{aligned}$ ALLOW TE for second mark	(1) (1) (1) (1)		2

Question Number	Acceptable Answers	Reject	Mark
16 (a) (v)	Any two from: Only one titration carried out Leaves may contain other substances that MnO_{4}^{-} could oxidize/ react with Not all ethanedioic acid extracted from leaves (1) ALLOW temperature too low/below $60^{\circ} \mathrm{C}$ Different amounts of acid from different leaves	Errors in technique e.g. transfer errors	2

Question Number	Acceptable Answers	Reject	Mark
16 (a) (vi)	(Wearing gloves suggested as) ethanedioic acid is toxic / harmful OR rhubarb leaves are toxic /harmful (Unnecessary because) it is (very) dilute / present in small amounts ALLOW because is not absorbed through the skin Second mark is independent of the first	References to weak acid Rhubarb is toxic	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6}$ (a) (vii)	(Cloudiness due to) MnO_{2} (solid /precipitate) (1) lgnore colour of precipitate		$\mathbf{2}$
EITHER Suitable use of $E^{\ominus}(+0.34 \mathrm{~V})$ OR^{-} MnO_{4} ions are a strong enough oxidizing agent to oxidize Cl- ions			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 ~ (b) ~ (i) ~}$	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}\left(4 s^{0}\right)$	$4 s^{2} 3 d^{3}$	1
Question Number Acceptable Answers Reject			
$\mathbf{1 6}$ (b) (ii)	Octahedral		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 \text { (a) (i) }}$	(Ligands cause) d orbitals / sub-shell / sub level to split Some frequencies of light (energy) are absorbed (1)	Description of flame test	$\mathbf{3}$
	To promote electrons (within d level / d \rightarrow d (1) transitions) ALLOW as alternative for second mark Remaining light is transmitted / reflected (resulting in the colour seen) Mark independently		

Question Number	Acceptable Answers	Reject	Mark
17 (a) (ii)	Concentrated HCl / HCl / HCl (aq) (1) Ligand exchange / replacement / substitution (1) Mark independently	Dilute HCl	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
17 (b) (i)	$\begin{equation*} \left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+} \tag{1} \end{equation*}$ ALLOW $\begin{equation*} \left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \tag{1} \end{equation*}$ (1) ALLOW second mark for number of $\mathrm{H}_{3} \mathrm{O}^{+}$ions related to incorrect complex e.g. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{2+}+2 \mathrm{H}_{3} \mathrm{O}^{+}$scores second mark Ignore state symbols even if wrong		2

Question Number	Acceptable Answers	Reject	Mark
17 (b) (ii)	The concentration of oxonium / hydrogen ions is less in the $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ / fewer hydrogen ions produced or reverse argument based on Cr ion (1) ALLOW $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} /$ chromium ion deprotonates more easily if $\mathrm{H}_{3} \mathrm{O}^{+}$shown in equation in (b) (i) Because copper ion is $2+$ whilst the chromium ion is $3+/$ charge on copper ion is less than charge on Cr ion / less charge density on $2+$ ions / $\mathrm{Cr}(3+)$ draws more electron density from the $\mathrm{O}-\mathrm{H}$ bond	Just chromium complex more acidic The concentration of oxonium / hydrogen ions is greater in the $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ / more hydrogen ions produced Ligand exchange	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}(\mathbf{c})$	$\mathrm{Cr}(\mathrm{OH})_{3} / \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (d)}$	NaOH is a (strong) base / alkali (1) $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}$ loses (three) protons / undergoes further deprotonation	Chromium is amphoteric	3
OR	(1) $\mathrm{Cr}(\mathrm{OH})_{3}$ is amphoteric (so reacts with strong bases) To reverse reaction 4 add (sulfuric) acid / HCl / (1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (\mathbf { e })}$	$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+(\text { edta })^{4-} \rightarrow[\mathrm{Cr}(\text { edta })]^{-}+6 \mathrm{NH}_{3} \quad$ (1) lgnore missing brackets lgnore state symbols even if wrong	$\mathbf{2}$	
	During the reaction number of particles increases (2 to 7) $/$ more moles of product than reactants AND entropy (of system) increases	Entropy increases because a gas is produced only Just more products than reactants	

TOTAL FOR SECTION B = 50 MARKS

Section C

Question Number	Acceptable Answers	Reject	Mark
18 (a) (i)	Mass of C in $\mathrm{CO}_{2}=12 / 44 \times 0.88=0.24 \mathrm{~g}$ Mass of H in $\mathrm{H}_{2} \mathrm{O}=2 / 18 \times 0.216=0.024 \mathrm{~g}$ So mass of oxygen $=0.328-(0.24+0.024)=$ 0.064 g Moles of $\mathrm{C}=0.24 / 12=0.02$ Moles of $\mathrm{H}=0.024 / 1=0.024$ Moles of $\mathrm{O}=0.064 / 16=0.004$ $\begin{equation*} \text { Ratio }=\text { simplest ratio }=5: 6: 1 \text { so } \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \tag{1} \end{equation*}$ OR Moles of $\mathrm{CO}_{2} \quad 0.88 / 44=0.02$ Moles of $\mathrm{H}_{2} \mathrm{O} \quad 0.216 / 18=0.012$ Moles of $\mathrm{H}=0.024$ therefore ratio of $\mathrm{C}: \mathrm{H}$ is $5: 6$ Can gain remaining two marks if they continue calculation as above OR $\begin{equation*} \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}=164 \tag{1} \end{equation*}$ Percentage carbon is $120 / 164=73.2 \%$ Percentage hydrogen is 7.3% Percentage oxygen is 19.5% Mass of carbon $=73.2 \times 0.328 / 100=0.24$ Mass of hydrogen $=7.3 \times 0.328 / 100=0.024$ Mass of oxygen $=19.5 \times 0.328 / 100=0.064$ Mass of carbon in CO_{2} is $12 / 44 \times 0.88=0.24$ Mass of hydrogen in $\mathrm{H}_{2} \mathrm{O}$ is $1 / 9 \times 0.216=0.024$ (1) OR Mass of C in $\mathrm{CO}_{2}=12 / 44 \times 0.88=0.24 \mathrm{~g}$ Mass of H in $\mathrm{H}_{2} \mathrm{O}=2 / 18 \times 0.216=0.024 \mathrm{~g}$ So mass of oxygen $=0.328-(0.24+0.024)$ $=0.064 \mathrm{~g}$ Percentage of $\mathrm{C}=0.24 / 0.328=73.2 \%$ Percentage of $\mathrm{H}=0.024 / 0.328=7.3 \%$ Percentage of $\mathrm{O}=0.064 / 0.328=19.5 \%$ $\begin{equation*} \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}=164 \tag{1} \end{equation*}$ Percentage carbon is $120 / 164=73.2 \%$ Percentage hydrogen is $12 / 164=7.3 \%$ Percentage oxygen is $32 / 164=19.5 \%$		4

Question Number	Acceptable Answers	Reject	Mark
18 (a) (ii)	Add (small amount of) Br_{2} / bromine (Br_{2} turns from orange / yellow / red-brown to) colourless / decolourised OR Add (small amount of) acidified $\mathrm{KMnO}_{4}(\mathrm{aq})$ $\mathrm{KMnO}_{4}(\mathrm{aq})$ turns from purple/pink to colourless / brown OR Add (small amount of) alkaline $\mathrm{KMnO}_{4}(\mathrm{aq})$ $\mathrm{KMnO}_{4}(\mathrm{aq})$ turns from purple/pink to green	clear	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ (a) (iii)	(Heat under) reflux		1
	OR		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ (a) (iv)	$\mathrm{CH}_{3} \mathrm{COCl}^{2} / \mathrm{CH}_{3} \mathrm{COO}\left(\mathrm{COCH}_{3}\right) /$ ethanoyl chloride / ethanoic anhydride	Correct answer plus AlCl_{3} Acyl chloride ALLOW $\mathrm{CH}_{3} \mathrm{COOH} /$ ethanoic acid and $\mathrm{H}_{2} \mathrm{SO}_{4} /$ sulfuric acid $/ \mathrm{HCl} /$ hydrochloric acid	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
18 (b) (i)	steam source and r.b /pear-shaped flask (and clove buds) OR r.b /pear-shaped flask being heated and containing water (and clove buds) Condenser with water jacket, in correct position and direction of water flow Collection vessel -1 if apparatus does not work e.g. sealed -1 for no joints or leaky joint	Conical flask if being heated with the clove buds in	3

Question Number	Acceptable Answers	Reject	Mark
18 (b) (ii)	Mix organic solvent and oil-water mixture in a separating funnel then separate Distil / rotary evaporate (to separate clove oil from organic solvent) Add (anhydrous) $\mathrm{CaCl}_{2} /$ (anhydrous) MgSO_{4} $/$ (anhydrous) $\mathrm{Na}_{2} \mathrm{SO}_{4} /$ silica gel / calcium oxide to clove oil, (then filter / decant) ALLOW name or formula of drying agent (Second and third marks in either order) OR Add (saturated solution) of $\mathrm{NaCl} /$ sodium salt Separate in a separating funnel Add named drying agent to clove oil, (then filter / decant)	(Anhydrous) CuSO ${ }_{4}$ NaOH , sodium carbonate, sodium hydrogencarbonate, calcium carbonate	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ (c)	Choice with justification (1) e.g. 'yes it's reasonable as clove oil may be in use at harmful /toxic levels so we need to identify what that level is' 'no as clove oil has been in use for many years in many ways so tests on animals not necessary to confirm it's safe to use at current levels' / no, as humans would have to consume large amounts	No, because of because it's toxic objections to animal testing in general	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
18 (d)*	```4 clear justified comparisons - 1 mark each \(\mathrm{ScCO}_{2}\) oil obtained seems purer (as colour closely matches that of eugenol) requires no further purification, (others use solvent extraction) greater yield per hour``` yield 15.3 g per 100 g of buds no organic solvent (because it is chlorinated) and so environmental problems / harmful / damage ozone layer requires high pressure so likely to be expensive / requires specialist equipment Steam distillation steam distillation can be done using standard lab equipment /does not require high pressures yield only $6.1 \mathrm{~g} / 6.2 \mathrm{~g}$ per 100 g of buds Steam gives the least yield per hour Soxhlet produces greater yield of oil but has a smaller percentage of eugenol /eugenol ethanoate yield 16.8 g per 100 g of buds (takes longer) but does not require high pressures uses organic solvent (because it is chlorinated) and so environmental problems / harmful / damage ozone layer Oil obtained seems least pure Synthetic route has several steps, each with a low yield clove buds are renewable but materials in synthesis are not / materials in synthesis likely to be obtained from oil	produces pale yellow oil Just no organic solvent Only two hours / shorter time than other methods Just higher percentage yield Just no organic solvent Higher yield than soxhlet	5

TOTAL FOR SECTION C = 20 MARKS

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA026203 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

